Analysis of cell cycle disruptions in cultures of rat pleural mesothelial cells exposed to asbestos fibers.
نویسندگان
چکیده
The control of DNA integrity in mammalian cells is important to maintain the cell homeostasis and prevent neoplastic transformation. Control of cell division and cell death permits repair or elimination of damaged cells. Since asbestos fibers can produce DNA damage, chromosome alterations and apoptosis in several sorts of cells, including mesothelial cells, it was interesting to investigate cell cycle disturbances in rat pleural mesothelial cells (RPMC) treated with asbestos fibers. Cell cycle analyses were performed in RPMC exposed to crocidolite (10 and 20 microg/cm2) and chrysotile (5 and 10 microg/cm2) for different times (4 to 48 h). Both fiber types entailed a G2/M accumulation in agreement with a delay in the mitosis course. Chrysotile fibers produced a G0/G1 accumulation associated with a time-dependent p53 and p21 expression. Crocidolite exposure resulted in a delay in the G1/S transition paralleling a low rate of p53 expression. These results are in agreement with a DNA damaging potential of asbestos fibers since similar results were found following RPMC exposure to gamma rays. In asbestos-treated RPMC, a low rate of apoptosis was found suggesting that RPMC may follow a DNA repair pathway that could contribute to the formation of DNA lesions. In addition, the cell cycle disturbances at the G2/M checkpoint suggest that genetically altered cells have progressed through the cycle and support the already published findings on the ability of asbestos fibers to impair cell division.
منابع مشابه
Asbestos fibers and interleukin-1 upregulate the formation of reactive nitrogen species in rat pleural mesothelial cells.
Nitric oxide radical (.NO) and peroxynitrite anion (ONOO-) have been implicated in lung inflammation and may be important in pleural injury. The present study was undertaken to determine the effects of asbestos exposure and cytokine stimulation on .NO and ONOO- production by rat pleural mesothelial cells. Accordingly, rat parietal pleural mesothelial cells were cultured for 2 to 72 h with or wi...
متن کاملALUNG August 21/2
Choe, Nonghoon, Jun Zhang,Akitaka Iwagaki, Shogo Tanaka, David R. Hemenway, and Elliott Kagan. Asbestos exposure upregulates the adhesion of pleural leukocytes to pleural mesothelial cells via VCAM-1. Am. J. Physiol. 277 (Lung Cell. Mol. Physiol. 21): L292–L300, 1999.—This study was designed to assess the effects of in vitro and in vivo asbestos exposure on the adhesion of rat pleural leukocyte...
متن کاملAsbestos exposure upregulates the adhesion of pleural leukocytes to pleural mesothelial cells via VCAM-1.
This study was designed to assess the effects of in vitro and in vivo asbestos exposure on the adhesion of rat pleural leukocytes (RPLs) labeled with the fluorochrome calcein AM to rat pleural mesothelial cells (RPMCs). Exposure of RPMCs for 24 h to either crocidolite or chrysotile fibers (1.25-10 μg/cm2) increased the adhesion of RPLs to RPMCs in a dose-dependent fashion, an effect that was po...
متن کاملInflammatory Alteration of Human T Cells Exposed Continuously to Asbestos
Asbestos is a known carcinogen and exposure can lead to lung cancer and malignant mesothelioma. To examine the effects of asbestos fibers on human immune cells, the human T cell leukemia/lymphoma virus (HTLV)-1 immortalized human T cell line MT-2 was employed. Following continuous exposure to asbestos fibers for more than eight months, MT-2 sublines showed acquisition of resistance to asbestos-...
متن کاملPleural macrophage recruitment and activation in asbestos-induced pleural injury.
The pathogenesis of asbestos-induced pleural fibrosis is poorly understood. Moreover, there has been a long-standing controversy regarding the relative potential of different commercial types of asbestos to cause pleural disease. We postulated that inhaled asbestos fibers translocate to the pleural space where they stimulate the recruitment and activation of pleural macrophages. To test this hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 17 6 شماره
صفحات -
تاریخ انتشار 1997